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19. Abstract (cont.)

This approach was illustrated by using it to train a simulated multi-jointed
manipulator to perform sequences of reaching tasks. A theoretical perspective
was developed for addressing issues such as what happens when network learnin.g
alCLms ar scaledgF to larger tasks. A very general formulation of the
network learning task" was * n *o possess no efficient general solution inde-

pendently of the learning algorithm used. We report progress on methods for
structuring networks and their training in directioisthat may allow these
computational limitations to be overcome. Additional-progress was made in
the development of reinforcement learning methods forcontrol of dynamical
systems.
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COOPERATIVE INTERACTION OF SELF-INTERESTED

NEURON-LIKE PROCESSING UNITS
Principal Investigator: Andrew G. Barto

Summary-Progress was made in the development of connectionist learning methods
permitting networks to learn when they cannot be provided with training informa-
tion of the high quality required by supervised-learning methods. These methods can
permit the application of adaptive connectionist networks to tasks involving complex
dynamical behavior and high degrees of uncertainty. A method for training layered
networks to perform nonlinear pattern recognition and associative memory tasks was
refined. The neuron-like units making up these networks learn on the basis of feedback
that evaluates behavior but does not specify desired output or directly provide error
information. It was shown how this method is related to gradient-following methods,
how its learning rate can be improved, and it was argued that this method is biolog-
ically plausible. A generalized theory of supervised learning was developed, in which
training information comes in the form of constraints instead of specifications of desired
network outputs. This approach was illustrated by using it to train a simulated multi-
jointed manipulator to perform sequences of reaching tasks. A theoretical perspective
was developed for addressing issues such as what happens when network learning algo-
rithms are scaled up to larger tasks. A very general formulation of the network learning
task was shown to possess no efficient general solution independently of the learning
algorithm used. Progress was made on methods for structuring networks and their
training in directions that may allow these computational limitations to be overcome.
Additional progress was made in the development of reinforcement learning methods
for control of dynamical systems.
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1 Research Accomplishments

Following is the abstract of the research proposal that led to funding of the research
being reported here. It states the research objectives.

The aim of the proposed research is to extend experience with a particular
approach to learning in networks of neuron-like adaptive elements. The long-
term goal of this research is the development of massively parallel adaptive
systems that incorporate principles of operation suggested by nervous sys-
tems. It is an alternative to the knowledge-based approach of conventional
Artificial Intelligence. The chief characteristic of our approach is that each
network component is a self-interested agent that attempts to learn, via a re-
inforcement learning process, how to obtain its most highly preferred inputs.
These components implement a novel learning rule previously developed by us
that causes them to learn to enter into cooperative interactions with one an-
other for mutual benefit. A significant consequence of this type of interaction
is that layered networks of these elements can learn to implement nonlin-
ear associative mappings by constructing the necessary representations. This
method of learning nonlinear associative mappings is therefore one of several
recently developed by various reseach groups that promises to greatly extend
the power of adaptive networks. We propose to exploit the capabilities of
this method in control tasks related to the following problems: t) the devel-
opment of coordinative structures in motor control, and 2) the learning of
strategies and representations for guiding movement in space. In the context
of these domains, we propose to investigate how well these algorithms scale tip
to larger networks, how their performance can be improved, and how their
novel capabilities can extend current abilities to control complex systems.
The proposed methodology relies on computer simulation and mathematical
analysis.

We have made substantial progress in the following areas: 1) the refinement of rein-
forcement learning methods for nonlinear pattern recognition and associative memory, 2)
the development of adaptive network methods applicable to problems in motor control
and robotics, 3) the development of a theoretical perspective nn scaling up network learn-
ing algorithms, 4) the investigation of metlhods for acceleratirg convergence" 4 Iarmiig
methods by adaptively altering learning rate parameters. 5) t lie devel,,init -f[a modular
network architecture and learning method, anid 6) Ihe refiiemen I, f reiif,,rceeni learn-
ing methods for control of dynamical systems. I discuss each ,4 iese areas ,f pr,,gress
below. Several additional topics are discussed which were nt as Vell developed as tlh,,se
mentioned above at the end of the funding period. Most of the research conducted inder
this grant has been described in detail in published technical reports, conference papers,
and journal articles. In the sectiois that follow, the topics on which we have published
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are treated with less detail than those on which we have not yet published, and references
to the appropriate published material are provided.

Although we believe that all of this progress has been significant, we believe that
some of the research is truly outstanding, having already made a considerable impact
on the field of connectionist computing. Specifically, the theoretical results achieved by
J. S. Judd, supported as a graduate student by the grant, on the complexity of network
learning is having considerable influence, as is the research of M. I. Jordan, supported by
the grant as a post-doctoral researcher, on supervised learning for systems with excess
degrees of freedom.

2 Refinement of Reinforcement Learning Methods

Substantial progress was made in refining and exploring the utility ot neuron-like units
that attempt to maximize an evaluation, or reinforcement, signal. Unlike most of the
neuron-like adaptive units being studied by others, such units do not require direct speci-
fication of target, or desired, outputs. In this section, we focus on reinforcement learning
methods as applied to classification tasks and static decision tasks. In Section 7 we dis-
cuss more recent progress made in understanding reinforcement learning as an approach
to the problem of controlling dynamical systems.

2.1 The Associative Reward-Penalty (AR-P) Unit

An AR-P unit is a neuron-like unit having a stochastic binary output and a learning
rule for adjusting its connection weights so as to maximize the probability with which it
receives an evaluation or reinforcement signal indicating "reward" or "success" (Figure
2.1). It is one embodiment of the idea of a "heterostat" put forward by Klopf 122, 23]:
a neuron-like unit which tries maximize some local form of "pleasure". The AR-P unit
is the most successful of our efforts to develop Klopf's idea into a concrete implementa-
tion. Barto and Anandan [41 described the learning rule and proved that it maximizes
success probabilty under certain conditions. In previous research, we found that lay-
ered networks of AR-P units could reliably learn to solve nonlinear pattern classification
and associative memory tasks [2, 1]. After we developed the AR-P unit and applied it
to the problem of learning of nonlinear mappings by layered netw,,rks, the error back-
propagation algorithm was popularized by Rumelhart, Hinton, and Williams f301. The
success of this latter algorithm, and the publicity surrounding it, has been partly re-
sponsible for the enormous increase in interest in artificial neural networks. Obviusly,
therefore, we were interested in investigating the relationship between the .4 R-P and
the error back-propagation methods and to compare their performances. PreviOus con-
parative simulations [1] showed that back-propagation is considerably faster than the
AR-P method in some simple tasks, but we felt that the AR- method might still have
some advantages, especially if we could develop some of the obvious ways of speeding it
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Figure 1: An Associative Reward-Penalty (ARnP ) Unit.

up.
We wanted to take advantage of the theoretical results of Williams [38, 391 showing

that the weight vector of an AR-p network follows a relevant performance gradient in a
statistical sense; that is, AR-p networks perform a stochastic form of gradient descent.
Based on these results, we developed a way to apply the AR-p algorithm to supervised
learning tasks so that the network does something as close as possible to what back-
propagation does, but does it without requiring the complex back-propagation process.
We also introduced a method, which we called "batching," for increasing the learning
efficiency of AR-, networks. In this method we essentially let the AR-P units in the
network generate several actions while network input is held constant at one of the
training patterns. For each of these actions the network receives a reinforcement value.
Weights are then updated according to the resultant weight change computed over this
period of constant input. We applied this method to the task of learning to detect
symmetry axes in binary patterns on a four-by-four grid. In one version of the task,
the network has three output units, and must categorize the input as havinig either
horizontal, vertical, or diagonal symmetry (only one of the two pssihle diag,,nal axes is
used). We also studied a simpler task with a single output unit, in which the network
must discriminate between horizontal or non-horizontal symmetry. For either version of
the task, our networks had sixteen input units, corresponding to the four-by-four grid,
and twelve hidden units. There was full connectivity between layers, yielding a total of
243 modifiable weights and biases in the case with three output units, and 217 modifiable
weights and biases in the case with one output unit.
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The results showed that batching can speed up learning by AR-p networks, but back-
propagation is still faster. Nevertheless, the AR-P method may have some advantages
over back-propagation: 1) it is much more plausible from a biological perspective, 2) it
may be easier to implement in hardware, and 3) it is applicable to tasks to which back-
propagation is not, namely, tasks in which desired responses are not known for a set of
training instances. Barto and Jordan [6] described these results in detail. This paper
also introduced a version of the AR-p algorithm, called the "S-model AR-P ", that works
for real-valued reinforcement signals instead of the binary ones to which the original
ARP- method was restricted.

Due to the superiority of the error back-propagation method over A4 R-p networks as
a practical method for training layered networks in supervised-learning tasks, we shifted
attention to tasks in which the training information required for supervised learning is ab-
sent. In these tasks, called associative reinforcement learning tasks, the target responses
of a network's output units are not known, but the consequences of the network's output
patterns on an unknown process can be evaluated by a critic which at each step supplies
the network with an evaluation, or reinforcement, signal. Figure 2 shows how a network
can be applied to such a task. The critic in the figure is shown as supplying signals to
a reinforcement pathway for each unit in the network, but the important point is that
learning occurs even when all these pathways always transmit the ;ame signal to their
target units, i.e., when a single evaluation signal is effectively broadcast to all the units. If
the critic is able to differentiate this global evaluation by sending evaluations specialized
for individual units, learning occurs more quickly. Thus, although ARnP units can take
advantage of individualized evaluation signals, they are also able to learn as members of
a "team" seeking collective behavior that maximizes reinforcement [2].

In associative reinforcement learning tasks such as shown in Figure 2, the reinforce-
ment learning abilities of AR-P units are needed not just for the hidden units but for
the output units as well. One task of this type with which we experimented has been
called a "decentralized team decision problem" (e.g. ref. [11]). We performed some com-
putational experiments using AR-P units as the decision makers i-n a simple cxample of
a decentralized team decison problem. In this task, there were two decision makers each
making a decision based on different but correlated information about some underlying
uncertainty. The outcome of the decisions depended on the coordinated actions of the
units. The units had to learn how to maximize a payoff through repeated trials. We
found that AR.P units were consistently able to learn how to solve this task. This is
a learning task in which uncertainty plays an intrinsic role. and t,, wliicl sulpervised-
learning methods are not directly applicable. This task is described in a b,-,,,k cliapter

by Barto [3], which summarizes a range of results we have achieved involving tihe colloc-
tive behavior of reinforcement-learning units. It also develops the hypothesis that there
may be a close relationship between neuronal learning rules and chemotaxic strategies ,f
freely-living unicellular organisms.

Another aspect of our research on the .AP unit has been our continuing attempts to
prove a stronger version of the A-tP convergence theorem proved by Barto and A nanda 11
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Figure 2: An AR-p network in an associative reinforcement learning task.

Effective learning occurs even when all the evaluation pathways
transmit identical signals.

[4]. According to this theorem, an AR-P unit successfully maximizes success probability
under rather general conditions, but the theorem requires one condition which is quite
stringent. Specifically, although the theorem allows success probabilities to depend on
AR-Punit actions in the most general probabilistic way (that is, for a given input pattern,
any process whatsoever can determine how success or failure signals depend on unit
activity), the theorem requires that the input patterns to the unit be linearly independent.
This is the same condition ensuring that a unit using the Widrow-tIoff, or Least Mean
Square, learning rule in a supervised task can solve that task exactly. The theorem sheds
no light on what happens when the input patterns are not linearly independent, which is
the usual situation in pattern classification tasks. We have been trying to prove a result
which does not require the assumption of linear independence.

Unfortunately, to remove this assumption requires a proof technique differc!t from
the one Barto and Anandan employed. Consequently, we arrange(d tn consult wilhi
Dr. P. S. Sastry of the Indian Institute of Science, Bangal,,re. in(lia, an expert id )plviYIg
theories of stochastic convergence to learning problems, who was visiting this c,,untrY.
We worked on several approaches to proving a stronger convergence theorem, and were
able to arrive at results for a special case of the AR-p algorithm. However, our wnrk

with Sastry indicated that the desired general result for the the .AR.P algorithm is not
going to be easy to prove because it seems to involve a very complex stochastic process.
We did not abandon our goal of proving a stronger AR-P convergence theorem, but we

placed a low priority on it.
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2.2 Real-Valued Stochastic Reinforcement Learning

A limitation of the AR-P unit for applications to motor control problems is that it is a
binary unit, that is, it has just two actions. In control tasks it is usually important to
be able to provide control signals with continuous values. It turns out to be nontrivial

to extend the reinforcement learning principles used by the AR-p unit to the case of
real-valued outputs. Basically, the difficulty lies in that fact that the probability mass or
density function over the set of unit actions has to be adjusted with experience by adjust-
ing certain parameters. In the case of just two actions, adjustment over the complete set
of all possible action probabilities is possible by adjusting a single parameter, which in
the case of the AR-P unit, is the unit's weighted sum. This is because a probability mass
function for two actions has a single degree-of-freedom (i.e., given that the probability of
action 1 is p, then the probability of action 2 must be 1 - p). However, for three or more
actions, you need more than one parameter.

We developed a reinforcement learning algorithm for a neuron-like unit having real-
valued outputs. We called such a unit an SRV (Stochastic Real-Valued) unit. An SRV
unit's output values are generated by sampling from a Gaussian distribution. The mean of
the distribution is the weighted sum of inputs using one set of weights, and the variance of
the distribution is determined from a weighted sum of inputs using another set of weights.
The learning rule adjusts both sets of weights as a result of reinforcement feedback so
that the mean moves toward the optimal action for each input pattern as the variance
decreases. The performance of SRV units was studied on simple associative reinforcement
learning tasks (for example, AND and XOR), with good results. We also applied SRV
units to a simulated motor control task as described in Section 3 below.

We also studied the convergence properties of SRV units from a theoretical perspec-
tive. We used Martingale theory to analyze the behavicr of simplified versions of the
SRV algorithm, and have been able to prove convergence of the weights under certain
conditions. The proof handles the associative aspects of these units in a manner simi-
lar to the AR._P convergence proof of Barto and Anandan [4]. We are in the process of
preparing this work for submission to a journal. The SRV research was conducted by
V. Gullipalli, a research assistant funded by this grant. A technical report was published
describing the SRV learning algorithm and the simulation results [10]. A version of this
report is in review for the journal Neural Networks.

3 Motor Control and Robotics

Considerable progress was made on developing connectionist methods for handling im-
portant problems involving the control of systems with many degrees-,f-freedom. In this
section we focus on the research specifically involving tasks in motor control and robosics.
However, the methods described are also applicable to other types of tasks.



3.1 Sequence Learning for Systems with Excess Degrees of Freedom

This research was a continuation of the Ph.D. research of 1I. I. Jordan, who was a post-
doctoral researcher funded by this grant. In his Ph.D. dissertation [14], completed in 1985
under the direction of David Rumelhart and Donald Norman at UCSD, Jordan developed
networks capable of learning sequences of patterns. Jordan's approach differs in several
ways from previously studied network methods for learning sequences. First, his networks
incorporate a kind of central pattern generator. Through internal recurrent connections,
his networks use internal state information to generate temporal patterns without the
usual form of pattern-to-next-pattern chaining. Second, Jordan used a training method in
which the network's output units are given constraints on their actions instead of explicit

instruction as to exactly what those actions should be. A consequence of this training
method is that the degrees-of-freedom of an output pattern that are left unspecified
by the external trainer become determined by the temporal context of the pattern. In
other words, the specific way the required constraints are met for an output pattern at a
specific time is determined by what the constraints were in the past and what they will
be in the future. The result is a smooth, efficient sequence of actions satisfying the given
constraints.

A natural extension of this approach is to apply it to positioning tasks for multi-jointed
robot manipulators. How can one learn what joint angles produce desired end-effector
positions specified in spatial coordinates (or other coordinates, such as eye-position coor-
dinates, that are not joint angles)? A critical aspect of this inverse kinematic problem is
how to choose from a usually infinite set of joint angles that yield the same desired end-
effector position. This occurs when the forward kinematic transformation implemented
by the manipulator does not have a unique inverse due to excess degrees-of-freedom in its
structure. Resolving this kind of redundancy is an important problem in roboticz, and
several approaches to it have been studied. However, the approach based on Jordan's
work differes from conventional approaches and represents an important contribution to
the field. Using the network architecture for generating sequences of patterns, it is pos-
sible for a systcm to learn sequences of positioning tasks in such a way that the problem
of excess degrees-of-freedom is resolved according to the temporal context of each posi-
tioning task in the sequence. How the system learns to select, from an infinite number

of possibilities, a joint configuration that achieves any given target position in space is
determined by the target positions that precede and follow the given target position.
Configurations are selected which tend to minimize the amount of monvement that must
be made in moving from postion to position.

To accomplish this, Jordan combined his approachl to learning sequences witlh a

method for using the error back-propagation algorithm to learn an inverse kinematic
transformation. The strategy is to learn a forward kinematic transformation-a model
of the robot arm-by a layered network in a "babbling" phase during which random joint
angles are associated with the resulting end-effector spatial positions. Then to learn how

to reach for specified spatial targets, the spatial error is back-propagated through the
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network that forms the arm model to transform it into a vector of joint-angle errors iised
for training another layered network. Input to this second network comes from Jordan's
recurrent sequence generating network, and the whole system is instructed to execute a
sequence of reaching tasks. He showed that the network can take advantage of the arm's
redundancy to find sequences of arm configurations in which the solutions at each point
in time depend on the solutions found at nearby points in time, so that the redundancy
is used to allow actions to overlap efficiently. This approach was demonstrated with a
simulated six degree-of-freedom manipulator in a two degree-of-freedom world, as well
as with a simulated manipulator with two fingers. These manipulators were trained to
perform sequences of positioning tasks. These results were described in a techincal report
[15] and a book chapter [16].

In ref. [15] Jordan developes the theory underlying the approach as a theory of "gener-
alized supervised learning." As a result of this theoretical perspective, it is possible to see
how the approach can be applied to a variety of problems involving systems with excess
degrees-of-freedom. These publications have been widely distributed, and the research
they describe is exerting considerable influence on the field. Jordan left the project in
January 1988 to take a position as Assistant Professor in the Department of Brain and
Cognitive Sciences, Massachusetts Institute of Technology, where he is continuing this
line of research.

3.2 Inverse Kinematics via Reinforcement Learning

We also investigated the use of reinforcement learning methods for problems in robotics
such as the inverse kinematic problem. The purpose of these simulations was to investi-
gate the utility of reinforcment learning as an alternative to Jordan's method described
above in tasks involving excess degrees-of-freedom. Whereas the approach pursued by
Jordan requires the learning of a forward model of the robot arm in order to translate
spatial errors into joint errors, the approach using reinforcement learning dispenses with
the necessity of such a model. We experimented with a network consisting of three SRV
units and 16 hidden "back-prop" units (Figure 3) to the problem of learning a position-
ing task with a simulated robot arm with three degrees of freedom (Figure 4). The task
was set up so that there were excess degrees-of-freedom. The planar arm has two joints
and its base can move along the top axis shown in Figure 4. A positioning task was
specified by selecting a target position, Xd, which was considered attained if the end of
the arm stopped anywhere on the vertical line at Xd. Clearly this can be accomplished
with an infinite number of differ tit arm configurations. The evaluation signal vhich was
broadcast to the output SRV units provided a scalar measure of the spatial distal,ce ,4
the end of the arm from the target line at xa-. The hidden units were trained via back-
propagation of the estimated evaluation gradient. Figure 4 shows one sequence of arm
positions generated by the network shown in Figure 3 after learning. Results suggested
that SRV units can be useful in learning tasks involving excess degrees-of-freedom 10].
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Figure 3: A network for a simulated arm positioning task consisting of three

SRV output units and 16 hidden units.
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Figure 4: The three degree-of-freedom planar arm used to study SRV units

in positioning tasks. A target position is reached when the end

of the arm stops anywhere along the vertical line at Xd.

4 Theoretical Framework for Network Learning

While supported as a research assistant by the grant, J. S. Judd developed a formal

framework in which to address some important questions about the computational limits

of network learning. He formalized a notion of learning in connectionist networks that

characterizes the training of feed-forward networks. Considering different families of node

functions, i.e., the functions that individual network elements compute,Judd proved that

the learning problem, so formulated, is NP-complete and thus that it has no efficient

general solution. One family of node functions studied is the set of logistic-linear func-

tions, as used by the back-propogation algorithm. Additional theoretical results describe

special classes of network topologies that can be trained in polynomial time.

Essentially, the learning goal as formulated is to find one algorithm that is guaranteed

to load any performable task in any conceivable feed-fnrward nevtw,rk. where l,,ading a

task means specifying the functions implemented by all the nodes in the nt tw,,rk. It

was proved that this problem has no efficient general soluti,,n. lloweve'r, several ways

were considered to weaken the formulation so as to possibly yield an achievable gnal.

There may be large useful classes of networks (defined by some design restrictions) where

loading a task would always be achievable in polynomial time. One can imagine several

ways to constrain the class of networks and/or tasks and, or other aspects in such a way

that the new loading problem would have some special regularity that might facilitate
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its solution. A wide range of questions regarding narrowed or altered models of the

connectionist learning goal are discussed in ref. [191. Answers to some of these questions
will assist connectionist learning research by narrowing its focus to those cases that hold

the promise of scaling up. We believe that there is a great need for theory of this kind
to increase the sophistication of connectionist research.

Several publications by Judd describe aspects of this research: refs. [20, 18, 17]. Judd
received the Ph.D. degree in September, 1988, and a revised version of his dissertation
on this subject will be published as a book by The MIT Press. Judd's work is receiving
considerable attention- -not only because it contains some of the few results of this kind
about neural networks-but also because it may have practical significance for designing
networks that are easy to train. Judd was appointed Adjunct Assistant Professor at the

University of Massachusetts, and is now a Visiting Professor at the California Institute
of Technology in Pasadena, where he is continuing this research.

5 Increasing Learning Rate through Learning Rate Adapta-
tion

Despite the negative nature of Judd's results on the scaling up of network learning, we
pursued several approaches to increasing learning rates of networks. The first approach
is to alter, during the learning process, the parameters that determine how the size and
direction of steps in weight space are computed as functions of the error gradient or
gradient estimate. For example, the use of "momentum" in the error back-propagation
method is an example of this approach. Although such methods cannot profoundly
increase the size of networks that can be feasibly trained, they are nevertheless useful in
practice for reducing the amount of computation required for studying network learning.
The second approach we pursued is to develop networks whose architectures are well-
suited for specific tasks. This approach, an example of which is discussed in Section 6, is

not subject to Judd's theorem becuse it involves structuring network architectures and
learning tasks instead of seeking a fast algorithm for arbitrary networks and tasks.

Methods such as Newton's method, recursive least squares, and conjugate-gradient
methods can be regarded as including sophisticated means for adjusting learning rate
parameters during learning. However, these methods cannot be implemented by neuron-
like adaptive elements unless updating each weight uses information about the input.

signals on all of the unit's input pathways. That is. these methds are w,,t as local as

the simpler methods used in most connect ionist research. Extendiig these m-ti,,ds 1,
entire networks of units again requires the use of inforiation that is iot likely t,, be

locally available to the units in real neural networks (or would he diftficult t,, slipply in

VLSI implementations of artificial neural networks). \Ve therefore focused attention o)n

methods that conform to a locality constraint.

R. A. Jacobs, a graduate student supported by the grant, examined local methods ,f
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adaptively adjusting learning rate parameters that have been proposed in the engineering
literature, developed several new methods, and tested these methods in a selection of
layered-network learning tasks. He summarized his findings in four heuristics that provide
guidelines for how to achieve faster rates of convergence than steepest descent techniques:
first, every parameter of the performance measure to be minimized should have its own
individual learning rate; second, every learning rate should be allowed to vary over time;
third, when the derivative of a parameter possesses the same sign for several consecutive
time steps, the learning rate for that parameter should be increased; fourth, when the
sign of the derivative of a parameter alternates for several consecutive time steps, the
learning rate for that parameter should be decreased.

We studied one method for modifiying rate parameters that we called the "delta-
delta" rule. This rule performs steepest descent on an error surface defined over learning
rate parameter space. If Ei is the learning rate for the ith weight, then it is updated
according to:

OJ(t) OJ(t- 1)awi(t) 19=~ - 1),

where J is the function of the weights that is being minimized by the network and Y is
a parameter. This algorithm for updating the learning rates implements the heuristics
listed above. When the sign of the derivative of a weight is the same on consecutive
time steps, the algorithm increases the learning rate for that weight. When the sign of
the derivative of a weight alternates on consecutive time steps, the algorithm decreases
the learning rate for that weight. Unfortunately, there are several problems with this
rule that limit its practical use. To remedy these difficulties, we developed a related
algorithm called the "delta-bar-delta" rule that is a bit more complicated in that it uses
an exponential average of the current and past partial derivatives.

We compared the performance of several rules for updating learning rate parame-
ters by applying them to four tasks. These tasks were the optimization of quadratic
surfaces, and the learning of the exclusive-or, multiplexer, and binary-to-local functions.
These tasks were chosen because their error surfaces possess a variety of terrains. The
update rules tested were: steepest descent, momentum, delta-bar-delta, and a hybrid
algorithm that combines the momentum and delta-bar-delta procedures. The last three
tasks require the use of multi-layer networks. For all algorithms, the back-propagation
procedure was used to calculate the partial derivative of the error with respect to each
weight. The simulation results provide support for the four heuristics for how to achieve
rates of convergence substantially faster than steepest descent algorithms and show that
the delta-bar-delta and hybrid methods substantially accelerate learning. A paper by ,Ja-
cobs describing these results were published in the October 1988 issue ,of Neural Nrtu'orks
[121.

Although the approach to accelerating learning using procedures of this kind does
yield speed increases, it is not likely that this approach will make a significant difference
for large problems (especially in light of Judd's theorem). We therefore began to focus on
methods for accelerating learning that we believe can have a greater impact in practical
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Figure 5: A modular network consisting of two expert networks and a gating network.

applications. These methods, described next, are based on structuring both the training
process and the networks.

6 Modular Network Architectures

An approach to improving the learning ability of connectionist systems is to organize
several networks into modular architectures. One advantage of such a structure is that
individual networks are not faced with solving a large problem in its entirety. Large prob-
lems are solved by the combined efforts of several networks. This requires that a problem
be broken into subproblems, and subproblems into subsubproblems, etc. We developed
a learning method for a modular architecture consisting of several networks, which we
call "expert networks", specialized for different kinds of tasks, and a "gating network"
that learns how to switch in the best expert network for a particular subtask. The expert
networks compete to learn about training patterns. Through such competition, different
expert networks are allocated to learn different functions. This approach can accelerate
the learning process if the architectures of the expert networks are designed based on
some prior knowledge of subtasks, and it can permit the modidar network to, ercicnntlv
learn to perform multiple tasks by allocating different expert nelw,,rks f,,r each task.

Consider the architecture illustrated in Figure 5. It contains two types of networks.

The expert networks compete to learn and perform training patterns. The gating network
mediates this competition. After training, expert networks I and 2 compute different
functions that are useful in different regions of the domain. Let tle output of these
networks be labeled E1 and E 2 respectively. The gating network is an administrative
agency that decides whether expert network I or 2 is currently applicable. This network
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contains two output units labeled g, and g2 respectively. The output of the system, 0,
equals g1El +g 2 E 2 . Therefore, when gi 1 and g2 = 0, expert network I determines the

output of the system. Similarly, when gi = 0 and g2 = 1, expert network 2 determines

the output of the system.

During training, all networks modify their weights simultaneously using the back-

propagation algorithm [30]. However, the expert and gating networks attempt to mini-

mize different error functions. At each time step, the expert networks attempt to min-
imize the sum of squared error between the output of the system, 0, and the desired

output, O. This errror function is written
1

Jo ( - o)T(o- 0 0). (1)
"0 2

The gating network attempts to minimize a more complicated error function. The

intuition behind this function is as follows. For each training pattern, one expert network

comes closer to producing the desired output than the other expert networks. In the

competition among networks, this one is called the winner and all others are losers.

Suppose that on this training pattern, the system's performance is significantly better
than it has been in the past. In this case, the output of the gating network corresponding

to the winning expert network is increased towards one and the outputs corresponding

to the losing expert networks are decreased toward zero. Alternatively, if the system's

performance has not improved, then all outputs of the gating network are moved toward

a neutral value.

Mathematically, this intuition is expressed as follows. First, we determine if the

system's performance is significantly better than it has been in the past. If t is the

current time step, then the error Jo(t) is a measure of the current performance. The
measure of the system's past performance is the exponential average over time of Jo.

This value, labeled 7-, is computed by

a-(t) = iCJo(t) + (1 - a)7-(t - ). (2)

We use the binary variables 'IVTA (WTA stands for winner-take-all) and ANT (NT stands

for neutral) to indicate whether the system's performance has significantly improved.

Specifically,

If Jo(t) < y7Too(t- 1) (3)

Then AWTA I and ANT

Else A117.1 and ANT

Suppose that the system's performance has significantly improved. In tihis case, we

determine which expert network's output is closest to the desired output. l)efine the

error for expert network i to be the sum of squared error between the network's oiutput

E, and the desired output 0. This value, labeled JE,, is written

1 - E,)(O - E,). (4)
2
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The winning expert network, labeled w, is the network with the smallest error. All
other expert networks are losers. The desired value of the output of the gating network
corresponding to the winning expert network, labeled g-,, is set to 1. The desired values
of the outputs corresponding to the losing expert networks, labeled g[, are set to 0.
Alternatively, if the system's performance has not significantly improved, then the desired
values for all outputs of the gating network are set to a neutral value. This value is
where n is the number of expert networks.

The gating network's error function is:

in
"1dG A IVTA- -_,(g1 - gi) -  (5)
2 i=1
1 (1 "Av I (1- Zg,)+

i=

AIWTA _gi(1 - gi) -

i=1

Only the first three terms contribute to the error when the system's performance has
significantly improved. Otherwise, only the fourth term contributes to the error. The
first term is the sum of squared error between the desired outputs and the actual outputs
of the gating network. Minimization of the second term occurs when the outputs of the
gating network sum to one. Minimization of the third term occurs when the outputs
of the gating network are binary valued. The effect of minimizing the second and third
terms is that, in response to each input pattern, one output of the gating network equals
one and all others equal zero. The fourth term is the sum of squared error between the
neutral value and the actual outputs of the gating network.

The gating network determines how much each expert network learns about each
training pattern. Referring to Figure 5, note that the error vector back-propagated
into expert network 1 is gi(O" - 0) and the error vector back-propagated into expert
network 2 is g2(O" - 0). Thus, the gating network determines the magnitudes of the

expert networks' error vectors.

Several investigators have noted that the selection of a network's topology is extremely
important since the topology determines what functions the netwrk cani readily learn
and what functions it can only learn with great difficulty, if at all. Flrt hrm,,r, the,

topology also influences a network's ability to generalize. Frequently, an experimtinenr
can use domain knowledge to select a set of expert nctwork topologies that are potentially
useful for rapidly learning the tasks faced by the architecture. An advaltage of requiring
the expert networks to compete to learn and perform training patterns is that the net work
whose topology most facilitates the learning of the function that generates the current

training patterns is likely to win the competition. Thus, our architecture tends to allocate
to each function an expert network with a topology that is appropriate to that function.
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We tested this architecture on a simple vision task and on a robotics task. The vision
task was proposed by Rueckl, Cave, and Kosslyn [29] who compared the performance
of two connectionist systems on an object recognition task (henceforth, referred to as
the "what" task) and a spatial localization task (henceforth, referred to as tile "where"
task). In their study, the first system is a single network which is required to learn both
tasks. The second system, on the other hand, consists of two networks, one for each
task. During training of the systems, one of nine patterns was placed at one of nine
locations on a 5 X 5 matrix. The "what" task is to identify the pattern. The "where"
task is to identify the spatial location. Rueckl, Cave, and Kosslyn [29] report that the
second system is superior to the first system in the sense that it learns the tasks faster
and develops a more interpretable representation.

An issue that Rueckl, Cave, and Kosslyn did not address, and the issue with which
we were primarily concerned, is the development of a system that can learn if it is better
to perform two or more tasks in distinct networks and, if so, ca.n itself allocate distinct
networks to learn each task. Such a system would have the ability to learn how to parti-
tion a task into subtasks and allocate these tasks to expert networks. Simulation results
demonstrate that the architecture and learning rule we developed learns to allocate dis-
tinct expert networks to the "what" and "where" tasks. Furthermore, the architecture
tends to allocate a single-layer network to the "where" task (this task is linearly separa-
ble) and a multi-layer network to the "what" task (this task is not linearly separable).
Thus, these results suggest that the architecture learns to allocate to each task an expert
network with a topology that is appropriate to that task.

The robotics task on which we tested this modular architecture is the task of learning
to control a robot arm to move a variety of payloads, each with a different mass, along
a desired trajectory. The architecture was successfully trained to serve as a feedfor-
ward controller for the robot arm using a training technique previously used by Kawato,
Furukawa, and Suzuki [21] and Miller [26]. During training, the architecture learn3 to
allocate one expert network to control the arm with no payload, a second expert network
to control the arm with a light payload, and a third expert network to control the arm
with a heavy payload.

We also trained a modification of the modular architecture to perform this trajectory-
following task. This modified architecture includes a "share network" whose output
contributes to the output of the system at all times. During training, the share network
learns to control the arm with no payload and the expert networks learn to supply extra
torques in order to compensate for the mass of each payl,,ad. In I his sense, the indif'ied
architecture learns to solve a task by learning a shared strategy t hat is used in all c,'intexts
along with a set of modifications to this strategy that are applied in a context sensitive
manner.

A preliminary discussion of this approach to modular architectures appeared as
ref. [13], and Jacobs is currently writing a Ph.D. dissertation on this topic which we
expect to be completed in the Spring of 1990.
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7 Reinforcement Learning for Control of Dynamical Systems

In research funded by previous AFOSR grants, we applied adaptive networks to the "pole-
balancing" task in which the network was required to learn how to prevent a pole from
falling by exerting appropriate control actions [8, 32, 1). Although we learned a lot from
that research, its character was too heuristic to appeal directly to the adaptive control
engineering community. We began the development of a more rigorous view of the type of
method implemented by the pole-balancing controller. This effort has resulted in major
insights into relationships between reinforcement learning methods for control and more
orthodox engineering methods and, consequently, better understanding of what may be
the strengths and weaknesses of connectionist reinforcement learning. In particular, it
has become clear that the most relevant existing mathematical framework is the theory
stochastic sequential decision problems and the most relevant computational methods are
those of stochastic dynamic programming. We have studied these connections through
interaction with C. Watkins, Philips Research Laboratories, whose Ph.D. dissertation
[35] develops this connection, discussions with P. J. Werbos, of The National Science
Foundation, who began exploring these connections in the mid-1970s [36, 37], as well as
continuing interaction with R. S. Sutton, of GTE Laboratories, Inc. These connections,
which are briefly outlined here, are discussed in detail by Barto, Sutton, and Watkins [91.
There is a huge literature on sequential decision problems and dynamic programming. A
relatively recent and concise account is provided by Ross [28].

Stochastic sequential decision problems involve a decision-making system (let us call
it the Decision Maker, or DM) interacting with a dynamical system in such a way that
at the beginning of each of a series of discrete time periods, the DM observes the sys-
tem's current state. Based on the observed state, the DM selects an action that will
influence the system's behavior. After the action is performed, the DM receives a certain
amount of payoff that depends on both the current system state and the action, and the
system undergoes a state transition determined by its current state, the action that was
performed, and random disturbances. Upon observing the new state, the DM chooses
another action and continues in this manner for a sequence of time periods. The task
of the DM is to form a rule for selecting actions, called a policy, that maximizes the
expected value of the sum of the payoff earned over future time periods. The return
of a policy refers to the sum of payoff received over time by a DM using that policy.
The objective is therefore to form a policy that maximizes the expected return. These
tasks are specific types of discrete-time control tasks where the wpiiry corr,'spnds to a
state-feedback control law.

The number of time periods, each corresponding to the selcO icii and perf',,rmance
of a single action, over which the return of a policy is determined is the horizon ,f the
decision problem. It is usual to distinguish problems according to whether the hloriz, i
is finite or infinite. In finite-horizon problems, one desires a policy that maximizes tle
expected return over a given finite number of time periods. In infinite-horizon problems,
one desires a policy that would maximize the expected return over an infinite number of
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time periods. A discount factor is often used to weight payoff values so that the farther
in the future a payoff is expected to occur, the less it contributes to the sum that is to
be maximized. In this case, a policy's return is a weighted sum of the payoff values that
the policy will produce over future time periods, where each weight depends both on the
discount factor and when the payoff is received. The infinite-horizon discounted case is
particularly interesting from a mathematical point of view and is the case to which our
reinforcement learning are most closely related.

The return expected over the future depends on the discount factor, the current state
of the system, and the policy the DM will use over the future. The evaluation function
for a given policy and discount factor assigns to each state the expected discounted return
given that the decision problem begins in that state and the DM uses the given policy
over the entire future. The objective of the decision task is to find a policy (there may
be many) such that, for a given discount factor, the corresponding evaluation function
takes on values that are as large as possible. Such a policy is an optimal policy, and the
evaluation function corresonding to it is the optimal evaluation function, which is unique
for a given discount factor.

Because so many problems of practical interest can be formulated as stochastic sequen-
tial decision problems, there is an extensive literature devoted to the study of solution
methods for this type of problem, the large majority of which require the decision maker
to have a complete model of the dynamical system underlying the decision problem.
Aside from extreme brute-force search methods, dynamic programming (DP) methods
provide the only methods for solving these problems in the general case of nonlinear sys-
tems. Stochastic dynamic programming methods apply to stochastic sequential decision
probems described above.

For finite-horizon problems, DP techniques work by computing backwards from the
end of a problem to its beginning, calculating information pertinent to decision making
at each step based on information previously calculated from that step to the problem's
end. In the stochastic case, if there is one step remaining in the task, the expected
return for each possible action can be computed on the basis of the knowledge-assumed
to be available-about the system state transitions and payoff probabilities. Thus, for
each state-action pair, one computes the payoff expected in one step, i.e., the expected
one-step return. Any optimal decision policy must select the action that maximizes
this expected one-step return when there is one step remaining in the decision problem.
Then, given that we know the maximal expected return from each state for a one-step
problem (which we have just computed), we can compute the expected t w,-step rel urn
for each state-action pair by treating the two-step problem as a one-step problem where
the expected return is the expected immediate payoff on the first step plus the expected
return for one more step-which is the quantity already computed. The optimal decision
for the penultimate step of the problem selects the action that maximizes this expected
two-step return. This process repeats until the entire optimal decision policy is specified.
If the problem has an infinite horizon, this iterative method can be modified slightly so
that it successively approximates the infinite-horizon case.
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Stochastic DP requires scales very poorly to large problems. As the number of process
states, actions, and steps in the decision problem increase, the amount of computation
required quickly becomes prohibitive. Consequently, the problem of forming estimates of
optimal evaluation functions and optimal policies without performing all of this compu-
tation has great practical significance. The reinforcement learning methods that we have
studied can be seen as such approximation methods that have the additional property of
being applicable when complete knowledge of the dynamical system underlying a decision
task is absent.

When a complete model of the dynamical system underlying a sequential decision
task is not available, it is necessary to learn about the system while interacting with
it. One approach is to construct a model of the system underlying tile decision problem
in the form of estimates of state-transition and payoff probabilities and then apply DP
methods under the assumption that the system model is accurate (e.g., refs. [24, 25, 31]).
In the nonlinear case, these methods scale very poorly because they require repeated
application of DP methods. Another approach is to directly adjust the decision policy
as a result of observed consequences of the decisions it specifies. Here, the DM tries
out a variety of decisions, observes their consequences, and directly adjusts its policy in
order to improve it. It is possible to facilitate this direct learning of a decision policy by
combining it with a process for estimating an evaluation function so that the long-term
consequences of actions are reflected in evaluations that are available immediately after
an action is performed. This is the approach we took in the pole-balancing system [81,
where the "Associative Search Element" adjusted the policy and the "Adaptive Critic
Element" estimated the evaluation function corresponding to the evolving policy. In
fact, as discussed in ref. [9], the learning rule used by the Adaptive Critic Element can be
understood in terms of a functional equation from DP. Although this is a "model-free"
approach to learning a decision policy, it does not preclude the additional use of system
models. Methods combining model-free techniques with model-based methods will be a
major emphasis of future research.

Within the framework of sequential decision problems and DP methods, the connec-
tionist reinforcement learning methods we have studied are best viewed as Monte Carlo
methods for approximating the results of stochastic DP methods and are applicable when
there is no complete model of the dynamical system underlying the decision task. In-
stead of computing optimal policies and evaluation functions using a system model and
DP methods, these functions are directly approximated by connectionist networks on
the basis of sequences of trials with the decision task. Irtiersiandljg hcse rIat i, n-
ships to existing theories has greatly contributed to ,ur goal of establishing conneci,,'imst
reinforcement learning methods as rigorously defensible appmaches to learning control
applicable to complex nonlinear control tasks. As pointed out by Werbos 371. cotipling
connectionist function approximation techniques to Monte Carlo DI) provides a means
for bringing connectionist algorithms and hardware to bear on sequential decision tasks
that are too large and involve too much uncertainty to permit solution by existing exact.
methods.
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8 Imperfect State Information

Methods for solving sequential decision problems based on dynamic programming such
as those discussed in Section 7 rely on having access to the state of the dynamical
system underlying the decision problem. When this information is absent, additional
methods must be used to provide estimates of the current state of the system. Additional
complexities arise if the problem is not just to estimate the state of a known dynamical
system but to construct a dynamical model based on observable information whose states
are to provide input to the decision-making process. Although there exists a large body
of literature on state estimation and system identification, we have pursued some ideas
that are not easily placed within the spectrum of traditional methods, having stronger
ties to grammatical inference than to traditional engineering methods. Below is a brief
description of this research which makes up part of the Ph.D. research of J. Bachrach, one
of the graduate students supported by the grant, who is currently writing a dissertation
on this topic expected to be completed in the Spring or Summer of 1990.

This work began with an investigation of methods for training simple reverberatory
circuits to act as memory devices. For example, a connectionist unit that excites itself
through a recurrent connection can be "set" or "reset" like an SR flipflop. This kind
of memory is different from the kind of long-term memory that is stored in connection
weights. The problem is to learn when to set or reset these bits in a variety of paradigms.
This kind of knowledge would be stored in connection weights. Early approaches to this
type of problem led to an investigation of research being conducted by Schapire and Rivest
of the MIT Laboratory for Computer Science, who designed an algorithm for constructing
a model of a finite-state environment through exploration [27j. We have developed a
connectionist network based on the representation of finite-state automata used in the
Rivest-Shapire (RS) algorithm. This representation has a natural, direct connectionist
implementation and is able to strongly constrain the network's architecture. Although
the network explores the environment in the simplest possible way-by choosing random
actions-for simple environments, the network can outperform the Rivest and Schapire
algorithm because it is able to consider many hypotheses in parallel. The network has
the additional strength that it is applicable to nondeterministic environments.

As a simple example, consider an environment consisting of n rooms arranged in a
circle, with a light and light switch in each room. In a given room, the decision maker
can take one of three actions: move to the room on the left, move to the roonm n the
right, and toggle the light switch in the current room. The decision maker c-an sense ihe
state of the light in the current room (on or off). This environment can be miodeled iM
the obvious way by a finite-state automaton (FSA) having 2' states. Although one cotuld
try learning an unstructured representation of this FSA by estimating its state transition
function, it often is not efficient to do so because the unstructured FSA representation
does not capture redundancy inherent in the environment. For example, in this n-rom
environment, although the sensation resulting from toggling the light switch is dependent
on only the state of the current room, in the unstructured FSA representation, knowledge
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about "toggle" must be encoded for each of the 2' distinct states. The environrnent has
symmetries not represented in the unstructured FSA representation. Rather tha'n trying
to learn the FSA in unstructured form, Rivest and Schapire suggest learning another
representation called an update graph. The advantage of the update graph representation
is that in environments with many regularities, the number of nodes in the update graph
can be much less than the number of states of the FSA (e.g., 2n versus 2' for the n-room
world). The update graph is a particular structured representation of the FSA in which
each state is represented by a pattern of activity across the nodes of the graph. In other
words, the update graph provides a particular distributed representation of environmental
states.

The update graph representation is based on the notion of a test. A test consists
of a sequence of zero or more actions followed by the application of a predicate that is
true for a particular sensation. A test is performed by executing the sequence of actions
from the current environmental state and then checking for the presence or absence of
the sensation. Certain tests will always yield the same truth value independently of
the current environmental state. For example, toggling the light switch four times has
exactly the same effect as toggling the switch two or zero times. Such tests are equivalent,
and there is a node in the update graph representation for each equivalent class of tests.
Each directed arc of the update graph is labeled with an action. There is an arc directed
from node a to node /3 labeled action if the test resulting from executing any test in the
equivalence class /3 followed by executing action is in the equivalence class represented
by node a. Associated with each node is a binary variable giving the truth value of
the corresponding test given the current environmental state. If the current values of
all nodes are known, then the values after executing an action can be inferred from the
update graph: The value of node /3 following action is equal to the current value of the
node a connected to 3 with the link labeled action. Thus, the sensations obtained after
performing a sequence of actions can be predicted simply by shifting values around in
the update graph. The update graph serves as a structured model of the environment.

Following this work of Schapire and Rivest [27], Bachrach in collaboration with M.
Mozer of the University of Colorado, devised a network architecture that learns to perform
as an update graph (Figure 6). Each unit in the network corresponds to a node in
the update graph. The binary-valued activity of a unit coiresponds to the truth value
of a node. Connections between units are gated by a set of gating units such that
the connection is enabled only if the given action is performed by the organism; this
corresponds to the labeled links between nodes of the update graph.

Training networks of the form shown in Figure 6 tl represent updat e grapihs r-lies
on performing error back-propagation through time [30] while the the decisjnii maker

is interacting with the environment using a random policy. In simple etnvironments,
the connectionist update graph outperforms the RS algorithm even though the actioln
sequence used to train the network is generated at random, whereas the RS algorithm
uses a specific exploration strategy. We conjecture that the network does as well as it
does because it considers and updates many hypotheses in parallel at each time step.
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Figure 6: Network architecture for learning update-graph representations

of finite-state environments.
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The network is also able to construct models of stochastic environments. For example,
if the sensations in the 3-room world are slightly unreliable, the network still learns the
task. The RS algorithm cannot handle nondeerminism. In more complex environments,
however, the network does not perform as well. For example, it failed to learn a 32-room
environment, whereas the RS algorithm succeeded. An intelligent exploration strategy
seems necessary in this case.

In order to further develop these and other ideas, a test-bed was designed and im-
plemented for studying them as applied to spatial navigation problems. This test-bed is
described in the next section.

9 Spatial Navigation Test-Bed

A wide variety of sequential decision tasks can be formulated in terms of moving in
spatial environments while receiving sensory information providing clues as to location
and orientation. Some of our initial explorations of reinforcement learning networks were
conducted in this domain [7, 5], and we have continued to find this a good domain for
posing problems and investigating solution methods (a recent example is described in
ref. [9]). Following is a brief description of a test-bed we implemented that will allow us
to address basic learning issues while at the same time provide us with fairly realistic
simulations of robot navigation tasks.

The system simulates a cylindrical robot with four wheels and a 3600 sensor belt.
The simulated robot can translate independently and simultaneously in both the x and
y directions relative to its orientation. The motion of the robot is simulated as discrete
movements, one per time step. The robot has 16 distance sensors and 16 grey-scale
sensors evenly placed around its perimeter. The distance sensors roughly simulate sonar.
Information from these simulated sensors is processed to yield 16 distance values and 16
grey-scale sensor values which measure the intensity of light at the various orientations.

Figure 7 shows a display created by the navigation simulator. The bottom portion
of the figure shows the robot's environment as seen from above. In this display, the
bold circle represents the robot's "home" position, with the radius line indicating the
home orientation for a homing task. The other circle with radius line represents the
robot's current position and orientation. The topmost canvas shows the grey-scale view
from the home position and orientation, and the next canvas shows tie grey-scale view
from the robot's current position and orientation. The third canvas fr,,i 'linh t,,p shio\s
smoothed distance values from both positions and orientatli,,ns, with th,,se frmI li.m,,
shown in horizontal stripes and those from current shown with vertical stripes. "I'le
fourth canvas shows smoothed grey-scale images for both the home and current posiltins
and orientiations. The fifth panel from the top of the figure shows the actions of the
robot, from left to right, x, y, and rotation.

This test-bed will be used by Bachrach for extending the approach to constructing
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Figure 7: Computer display generated by the navigation siniilat or.

25



environmental models described abo're in Section 8. He will study homing tasks in which
several positions and orientations pr,)duce the same sensory stimulation.

10 Conclusion

Progress was made in the development of connectionist learning methods permitting
networks to learn when they cannot be provided with training information of the high
quality required by supervised-learni ig methods. These methods can permit the applica-
tion of adaptive connectionist networks to a tasks involving complex dynamical behavior
and high degrees of uncertainty. The various projects undertaken with the support of
this grant were all motivated by isstles related to the control by networks of dynamical
systems. It is apparent that conne,:tionist techniques can substantively contribute to
the theory and practice of control of nonlinear dynamical systems with many degrees-of-
freedom. Future research will be directed toward studying these methods as applied to
a variety of simulated and real control tasks.
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Addison-Wesley (also COINS Technical Report 88-65, 1988, Computer and Informatiol
Science, University of Massachusetts, Amherst MA).

R. A. Jacobs, "Increased rates of corvergence through learning rate adaptation," Neural
Networks, Vol. 1, pp. 295-307, 1988.

R. A. Jacobs, "Initial experiments on constructing domains of expertise and hierarchies in
connectionist systems," in Proceedings of the 1988 Connectionist Models Summer School,
pp. 144-153, Morgan-Kaufmann, 19F8.

V. Gullapalli, "A stochastic algorithm for learning real-valued functions via reinforceTneit
feedback," COINS Technical Repor 88-91, 1988, Computer and lnfortnatin Science,
University of Massachusetts, Amher.t (submitted to Neural Networks).

J. S. Judd, "On the complexity of ioading shallow netwnrks," Journal of Complc.tdy,
Special Issue on Neural Computation, September, 1988.

J. S. Judd, "Neural network design End the complexity of learning." Ph.D. dissertation,
Department of Computer and Information Science, University of Massachusetts, Septem-
ber, 1988. A revised version of this dissertation will be published in book form by The
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MIT Press.

R. S. Sutton and A. G. Barto, "A time-derivative theory of Pavlovian conditioning," to
appear in Learning and Computational Neuroscience, M. Gabriel and J.W. Moore (Eds.),
Cambridge, MA: The MIT Press.

"Connectionist learning for control: An overview," to appear in Neural Networks for
Control, T. Miller, R.S. Sutton, and P.J. Werbos (Eds.), Cambridge, MA: The MIT
Press (also COINS Technical Report 89-89, 1989, Computer and Information Science,
University of Massachusetts, Amhert MA).

A. G. Barto, R. S. Sutton, and C. W. C. H. Watkins, "Learning and sequential de-
cision problems," to appear in Learning and Computational Neuroscience, M. Gabriel
and J.W. Moore (Eds.), Cambridge, MA: The MIT Press (also COINS Technical Report
89-95, 1989, Computer and Informa-ion Science, University of Massachusetts, Amherst
MA)

11.2 Interactions

M. I. Jordan, seminar at the Department of Psychology, University of Oregon, November,
1986.

A. G. Barto, Texas Instruments Research Colloquium, March 6, 1987, Dallas TX. Contact
persons: Andrew Penz, M. Gately.

A. G. Barto, "Connectionist learning control," presentation at the Conference on Neural
Networks For Computing, Snowbird. Utah, April 1-4, 1987.

M. I. Jordan, "Domain models and systems with excess degrees of freedom," presentation
at the Conference on Neural Networks For Computing, Snowbird, Utah, April 1-4, 1987.

A. G. Barto, Computer Science and Engineering Colloquium, Oregon Graduate Center,
Beaverton OR, April 7, 1987. Contact person: D. Hammerstrom.

M. I. Jordan, seminar at the Departnent of Psychology, University of California at San
Diego, April, 1987.

M. I. Jordan, seminar at the Department of Brain and Cognitive Science, MIT, March,
1987.

A. G. Barto, "Game-theoretic cool-erativity in networks of self-interested units." in-
vited presentation at University of YI aryland's Institute for Advanced Computer Studies
Workshop on Connectionist Models in Computational and Cognitive Science, University
of Maryland, May 3-5, 1987.

M. I. Jordan, seminar at Bell Communications Research, 435 South St., Morristown, NJ,
May, 1987. Contact person: J. Alspector.

A. G. Barto, seminar at Bell Commtnications Research, 435 South St., Morristown, NJ,
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May, 1987. Contact person: J. Alspector.

A. G. Barto, Applied and Computational Mathematics Seminar at BBN Corp., Cam-
bridge, MA, May 1987. Contact person: A. Boulanger.

M. I. Jordan, seminar at the Department of Speech and Communication, MIlT, May,
1987.

A. G. Barto, "Connectionist motor control: Coordination and adaptation," invited pre-
sentation at U.S.-Japan Joint Seminar: Competition and Cooperation in Neural Nets.
Univ. of Southern California, LA, CA, May 18-22, 1987. Contact person: M. Arbib.

A. G. Barto, seminar at the Center for Biological Information Processing, Whitaker
College, MIT: May 27, 1987. Contact person: E. Saund.

A. G. Barto and M. I. Jordan, "Gradient following without back-propagation in layered
networks," presentation at the IEEE First Annual Conference on Neural Networks, San
Diego, CA, 1987.

S. Judd, "Learning in networks is hard," presentation at the IEEE First Annual Confer-
ence on Neural Networks, San Diego, CA, 1987.

A. G. Barto, Department of Psychology Colloquium, University of Colorado, June 1987.
Contact person: B. McNaughton.

A. G. Barto, seminar at Department of Physiology, Northwestern University, Chicago,
ILL, October, 1987. Contact person: J. C. Houk.

A. G. Barto, seminar at King's College Seminar, Kings's College, Cambridge, UK,
November 1987. Contact person: G. J. Mitchison.

A. G. Barto, presentation at the Air Force Office of Scientific Research Review of Air Force
Sponsored Basic Research in Neuroscience, United States Air Force School of Aerospace
Medicine, Brooks Air Force Base, Texas, November 1987.

A. G. Barto, presentation at workshop: Neurons, Nodes and Networks, University of Ari-
zona Center for the Study of Complex Systems, Tucson, Arizona, March 1988. Contact
:erson: L. Nadel.

A. G. Barto, Computer Science Ad Hoc Seminar, Microelectronics Center of North Car-
olina Communications Network Seminar Series, April, 1988. Contact person: Z. Ras.

A. G. Barto, seminar at Case Western Reserve University, Cleveland. April 19R8. (Contact
person: Y. Pao.

A. G. Barto, presentation at workshop: The Neurone as a Computational Unit. ('am-
bridge, UK, June 1988. Contact person: G. J. Mitchison.

A. G. Barto, Faculty member at the 1988 Connectionist Models Summer School, Carnegie-
Mellon University, June 1988. Contact person: D. Touretzky.
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A. G. Barto, presentation at the NSF Workshop on the Applications of Neural Net-
works to Robotics and Control, The University of New Hampshire, October 16-18, 1988.
Contact persons: T. Miller, R. Sutton, and P. Werbos.

A. G. Barto, seminar at Oak Ridge National Laboratories, Oak Ridge, Tennessee, Novem-
ber, 1988. Contact person: G. Liepins.

A. G. Barto, seminar at the Computer Science Department, University of Tennessee,
November, 1988. Contact person: G. Liepins.

A. G. Barto, seminar at the Center for Adaptive Systems, Boston University, Boston,
MA, December, 1988. Contact person: S. Grossberg.

A. G. Barto, seminar at the Advanced Telecommunications Research Institute Inter-
national (ATR) Auditory and Visual Perception Research Laboratories, Osaka, Japan,
January, 1989. Contact person: M. Kawato.

A. G. Barto, presentation at The Rank Prize Funds Mini-Symposium on Neural Network
Computation, Broadway, Worcestershire, England, February, 1989. Contact persons:
H. Barlow (Cambridge) and M. Brady (Oxford).

NI. Mozer and J. Bachrach, "Discovering the structure of a reactive environment by ex-
ploration," presentation at the Conference on Neural Networks for Computing, Snowbird,
Utah, 1989.

A. G. Barto, seminar at the School of Engineering and Applied Science, University of
Durham, Durham, England, May, 1989. Contact person: P. Mars.

A. G. Barto, seminar at Edinburgh University, Edinburgh, Scotland, May, 1989. Contact
person: D. Willshaw.

A. G. Barto, seminar at the Department of Psychology, Cambridge University, Cam-
bridge, England, May, 1989. Contact person: A. Dickinson.

A. G. Barto, seminar at the Department of Computer Science, University of Oxford,
Oxford, England, May, 1989. Contact person: M. Brady.

A. G. Barto, seminar at the Applied Psychology Unit, Cambridge, England, June, 1989.
Contact person: D. Shanks.

A. G. Barto, presentation at the workshop: The Computational Principles rf the Cerebral
Cortex, King's College, Cambridge, England. July, 1989. Contact persi: C. .1. Mitchi-
son.

A. G. Barto, four public lectures on connectionist modeling, University of New South
Wales, Sydney, Australia, July 1-4, 1989. Contact person: E. J. Kelioe.

A. G. Barto, seminar at the Department of Computer Science, University of Sydney,
Sydney, Australia, July, 1989. Contact person: N. Foo.
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11.3 Participating Professiona's

Following is a list of professionals wlko participated directly in research partially or com-

pletely funded by AFOSR-87-0030, or closely related research.

Dr. R. S. Sutton, GTE Laboratories Incorporated, Waltham, MA. Dr. Sutton, formerly

a student of Barto whose Ph.D. research was supported by previous AFOSR grants, has

continued to interact closely with Barto and students funded by AFOSR-87-0030. In the
period being reported here, Sutton and Barto interacted in writing a conference paper

(ref. [34]) and two pook chapters (refs. [33, 9]). Dr. Sutton has served as a member of

the Master's committees of several s-udents funded by AFOSR-87-0030.

Consultation with Dr. P. S. Sastry, Indian Institute of Science, Bangalore, India, on

stochastic convergence theory of AR-p and related algorithms. Period: 5/11/88-6/19/88.

Barto and Sastry are continuing to correspond regarded this topic.

Dr. M. I. Jordan, Department of Brain and Cognitive Sciences, Massachusetts Institute
of Technology, Cambridge, MA. Dr. Jordan was supported as a Post-Doctoral Research
Associate by AFOSR-87-0030 until lie began his current position as Assistent Professor

at MIT in January, 1988. Since that time, he has maintained active interaction with

researchers funded by AFOSR-87-0030 and is serving on the Ph.D. committees of several

of the graduate students supported by this grant.

Interaction with C. J. C. H. Watkirs, Philips Research Laboratories, Cross Oak Lane,

Redhill Surrey RH1 5HA, England. While employed at Philips, Watkins pursued a Ph.D.
in Psychology at the University of Cambridge, Cambridge, England. His dissertation,

completed in June, 1989, concerns the problems of learning with delayed rewards, a topic
partially inspired by the AFOSR funded research of our group on reinforcement learning.
Watkins elaborated connections between our approach and concepts and computational
methods from the theory of stochasti.c dynamic programming. Watkins collaborated with
Barto and Sutton in producing the technical report on this subject, ref. [9], due to appear
as a book chapter.

Interaction with Dr. J. C. Houk, Chairman, Department of Physiology, Northwestern

University Medical Center, Chicago, Illinois. Dr. Iouk began a sabbatical semester as a
Visiting Professor in the Departmenl of Computer Science, University of Massachusetts,

in Sept. 1988. He is Principal Inve.,tigator of ONR Grant N00014-88-K0339, which is
supporting a computer science gradtate student at the University of Massachusetts and

which lists Barto as a consultant. This project is directed toward constructing a midel

of the cerebellum as a trainable pattern generator, and is closely related to the research

supported by AFOSR reported here.
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11.4 Advanced Degrees

Following is a list of advanced degrees awarded to students who were partially or com-
pletely supported by AFOSR-87-0030 while graduate students in the Department of
Computer Science, University of Maisachusetts.

J. S. Judd was awarded the Ph.D. Degree in Computer and Information Science in
September, 1988, for research suppirted by AFOSR-87-0030 and a previous AFOSR
grant. His dissertation is entitled "Neural Network Design and the Complexity of Learn-
ing." A revised version of the dissertation will be published in book form by the MIT
Press. Dr. Judd is currently an Adjunct Assistant Professor of Computer and Informa-
tion Science, University of Massachusetts, and is a Visiting Professor at the California
Institute of Technology, Pasadena, CA, where he is continuing this line of research.

R. A. Jacobs was awarded the M.S. Degree in May, 1987. His M.S. project was entitled
"Increased Rates of Convergence Tlrough Learning Rate Adaptation." A paper based
on this project appeared in the journal Neural Networks. Jacobs is currently working on
a Ph.D. dissertation on modular network architectures which is expected to be complete
in the Spring of 1990.

V. Gullapalli was awarded the M.S. Degree in May, 1988. His M.S. project was entitled
"Stochastic Reinforcement Learning in Motor Control" A paper based on this project is
currently in review for the journal Nural Networks. Gullapalli is currently working on a
Ph.D. dissertation on applying reinf)rcement learning to motor control problems which
is expected to be complete in the Fall of 1990 or the Spring of 1991.

J. R. Bachrach was awarded the M.S. Degree in December, 1988. His M.S. project was
entitled "Learning to Represent State." Bachrach is currently working on a Ph.D. disser-
tation on this same subject which is expected to be complete in the Spring or Summer
or 1990.

V. Bauer completed an M.S. project with partial support from the grant in August, 1989.
Her project was entitled "Effect of Discounting on Rate of Convergence in Temporal
Difference Learning." Bauer will receive the M.S. degree in December, 1989, and will not
pursue a Ph.D. degree at the preseni time.
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